We are developing cutting-edge technologies for the following biomedical application: 1) define the mechanosensing functions of key protein players in the cardiovascular system such as integrin receptors and mechanosensitive ion channels, and elucidate their contributions to the cardiovascular diseases - particularly thrombosis and guide the development of new anti-thrombotic therapeutic strategies; 2) investigate the transmembrane conduction of mechanical forces in neurology. In particular, the generation and regulation of force signals during membrane fusion such as the formation and regulation of SNARE complexes during neurotransmitter release. This study will provide fundamental biological insights for ongoing sensory bionics and implantable neuroprosthesis research.
Masters/PHD
In view of the high complexity and dynamics of protein complexes that perform important physiological functions, it is difficult to visualise and characterise their kinetic and signaling processes on single living cells using traditional biochemical and biophysical techniques. It is therefore urgent to develop high-resolution bioimaging and single-molecule manipulation technologies to observe life activities in native cellular environments at nanoscale. Over the last 5 years, Dr Ju has developed the state-of-the-art pico-force (10-12 Newton) BFP technique as the first of its kind in Australia. Using this powerful nanotool, he has made conceptual advances on the inner workings of many mechanosensory proteins including the platelet integrin receptor in thrombosis (Nature Materials 2019; Nature Communications 2018; eLife 2018), the Apolipoprotein A-IV (Nature Communications 2018), glycoprotein Ib (eLife 2016) and von Willebrand factor (Science Advances 2018) in haematology and the syndecan receptor in cancer biology (Nature Communications 2014). This theme will combine BFP with high-resolution microscopy leading to a more advanced BFP imaging platform. It will become the first in the world capable of correlating the mechanical stimulation profile with the real-time cellular responses of a single platelet with the superior temporal, spatial, and force resolutions at 0.7 milli-second, 3 nano-meter, and 1 pico-newton respectively. The whole system provides precise controls and quantitative readouts in both mechanical and chemical terms, which is particularly suited for live-cell mechanosensing studies over the traditional methods in biochemistry and cell biology that are usually population-averaged and non-real-time. In future, it will further upgrade the platform in the combination of patch clamp to realise the single-molecule electrophysiology, imaging and manipulation in one system.
Current PHD and/or Masters topics:
Eligibility criteria / candidate profile You will have:
Preferred experience include:
Scholarship(s) / funding available:
The opportunity ID for this research opportunity is 2785