Research Supervisor Connect

Designing tailored nanomaterials for CO2 capture


In this project we will develop a porous coating for our novel nano-structured CaO sorbent which will prevent abrasion of the particles inside the fluidised bed reactor, and then we will infuse the porous layer with a variety of catalyst materials to assist with important tar cracking and reforming reactions. This will combine the CO2 capture reaction with tar cracking and reforming reactions in a single step.


Professor Andrew Harris.

Research location

Chemical and Biomolecular Engineering

Program type



The long term viability of Australia’s coal industry will be enhanced by developing advanced techniques to capture and store CO2 emissions. The aim of this project is to develop tailored nanoparticle adsorbents for CO2 and other greenhouse gases using advanced chemical methods. When these sorbents are used in conjunction with coal, biomass and waste fuels it is possible to increase the hydrogen production rate from around 40% to 80% by volume. We have shown previously that a calcium oxide sorbent is a suitable CO2 sorbent, however the gasification reactions produce a gas mixture containing CO, CH4 and tars, as well as H2 and CO2. Additional H2 can be produced by catalytically steam reforming tars and methane and converting CO via high and low temperature water-gas-shift reactions. These additional steps make the process inefficient and costly. An alternative for these ex situ processes is required. Furthermore the CaO sorbent has poor mechanical strength, and consequently undergoes attrition and size reduction in the fluidised bed. A technique to prevent attrition and decay of the CaO sorbent is necessary to minimise sorbent consumption.

Want to find out more?

Opportunity ID

The opportunity ID for this research opportunity is 357

Other opportunities with Professor Andrew Harris